April 2021 saw the latest collaboration in support of fuel cell electric vehicle (FCEV) uptake, with automotive manufacturer Nikola announcing plans to create a hydrogen pipeline and refuelling system across Europe. What technology is required to make hydrogen a viable option both in terms of sustainability and automotive efficiency?

Europe has one of the world’s most developed hydrogen markets and is home to over half of all projects, according to The Hydrogen Council and McKinsey’s Hydrogen Insights Reports 2021. Both the UK and the EU have plans to develop their hydrogen offering and have committed to reach a production capacity of five gigawatts (GW) and 40 GW respectively by 2030.

Despite the maturity of the sector, Europe’s hydrogen still needs considerable development in order to reach net zero targets and to become a viable fuel source for automotive applications. Making usable, renewable hydrogen is no easy feat — so where’s the best starting point?


First, we must consider how we make hydrogen green. Hydrogen can be produced in many ways, each corresponding to a different colour. Most hydrogen produced in Europe is currently grey — it is produced by mixing natural gas and steam to create hydrogen and carbon dioxide in a process known as steam methane reformation.

The problem with this production method is that it relies on a fossil fuel to produce hydrogen, which conflicts with hydrogen’s alleged sustainability superiority over petrol and diesel-powered vehicles.

Ideally, we need to make green hydrogen, which uses renewable electricity to separate the hydrogen and oxygen atoms that make up water in a process called electrolysis. This results in zero carbon emissions.

Geographically, Europe is in an advantageous position thanks to an abundance of renewable energy sources in the surrounding area. The EU’s Hydrogen Strategy Report has already identified North Africa as a priority region for increasing hydrogen availability across Europe, thanks to a plentiful supply of sunlight and subsequent renewable energy.


Next on the agenda is making hydrogen-powered vehicles commercially viable. According to Hydrogen Mobility Europe, if hydrogen remains at the current low levels of demand, the cost of producing and supplying hydrogen could be passed onto end users. This would mean that hydrogen vehicles would cost more to run than both battery electric vehicles (BEVs) and fossil-fuelled cars. Therefore, any technology that can drive down cost is crucial to increasing uptake.

Fuel cell electric vehicles constantly convert hydrogen into electricity, which in turn charges the vehicle’s battery. In a process known as regenerative braking, most excess energy can be retained to help power the vehicle. However, if the battery is already fully charged or there is a failure in the system, there must be a mechanism in place to dissipate this energy surplus.

A dynamic braking resistor (DBR) is one of the most efficient ways to safely dissipate excess energy and ensure the system remains operational. Cressall’s EV2 DBR is a water-cooled resistor, which allows for safe dissipation without the need for extra components, resulting in an 80 per cent weight reduction when compared to a conventional air-cooled DBR.

These weight-saving properties lighten the load of the vehicle itself, meaning that it can travel further on the same amount of energy. This is particularly advantageous for weight-sensitive freight vehicles, such as pulp and paper or iron and steel transport. What’s more, the weight of a BEV’s battery or the additional components of an air-cooled DBR would reduce the potential load of the vehicle more than a FCEV would, which makes the EV2 and hydrogen a perfect combination for freight transport.

Nikola’s European hydrogen pipeline and fuel system is a landmark step in facilitating widespread uptake of FCEVs. However, if FCEVs are to overtake BEVs, then the refuelling system has to be accompanied by further developments in vehicle efficiency and hydrogen production to make the resource a completely sustainable, feasible option.



In response to growing demand for more precise power dissipation, load bank manufacturer Power Prove has launched a dedicated IGBT-based electronic power control chopper, for continuous regulation of its load bank product offering. The power control chopper can be easily integrated into load banks to achieve high power dissipation and a degree of precision superior to that offered by any competitor.

Power Prove, the load bank division Cressall Resistors, commissioned the design of the power control chopper to Italian Internet of Things (IoT) solution developer Techmakers. The combination of Power Prove’s in-depth knowledge of load banks and Techmakers’ expertise in electronic and software-controlled devices has resulted in a powerful, yet cost-effective, solution that meets the growing demands of the market.

A power control chopper is an electrically controlled solid state switch that is used to control the amount of current permitted to flow through a circuit. Normally, a high-power variable load requires multiple fixed value load sections ranging in values for power dissipation with contactors and a logic controller. However, by integrating the power control chopper into the system, a near-infinite set of values for power dissipation can be achieved using just a single resistor.

Power Prove’s chopper also has a closed-loop regulation circuit, which is capable of adapting to fluctuations in voltage and cold resistance variation without any input. Multiple units can be combined to reach high-power dissipation, enabling the load bank to withstand even the greatest of power values with high precision.

Anywhere that requires constant power, whether that’s a healthcare facility, manufacturing plant, or IT data centre, simply cannot afford a complete loss of power. These layers of infrastructure are often secured by an uninterruptible power supply (UPS) that provides power for critical operations if supply from the grid fails.

“The challenge for the managers these systems, which are often deployed as sources of back-up power in a black-out situation is how to determine whether the system is operational and will not fail on the relatively infrequent occasions when their use is required at a critical moment. Regular testing of emergency systems using load banks is therefore essential,” explained Andrew Keith, division director of Power Prove.

“Since these systems provide such a critical safety mechanism, a high level of precision is vital,” continued Keith. “The new power control chopper allows us to provide our load bank customers with a customisable load bank that can be easily integrated into an existing system to provide infinite levels of power adjustment at a degree of precision that is simply not available elsewhere on the market.”

An example of the power control chopper’s application is with battery discharge testing. The chopper can be used with a current feedback loop to provide a genuine constant current load on battery systems up to 1000 V DC. Multiple chopper units can be fitted inside the same load bank, or a combination of traditional fixed loads and chopper modules can be used to create a load bank with the current discharge capacity to suit its application.

In addition, the increasing adoption of electrical vehicles powered by batteries and fuel cells is generating a wide range of operating scenarios that need to be simulated. The development of the power electronic control module allows Power Prove to produce load banks that simulate a much more diverse range of operating conditions for research and development (R&D) testing, system commissioning tests and regular planned maintenance load testing.

The power control chopper is available globally from Power Prove, for more information, visit the website.




Electric vehicles (EVs) have been heralded as the answer to transportation’s sustainability issues, providing a scalable solution for the notoriously difficult-to-decarbonise sector. However, there’s one key component that needs some work if EVs are to become a completely sustainable method of transport — the battery. Here, Simone Bruckner, managing director of automotive resistor manufacturer Cressall, investigates the dark side of EV batteries. 

The electrification of the automotive market is a necessary step to reduce greenhouse gas emissions and ward off climate change’s consequences. Every automaker is in support of the rollout, with more affordable models being released by the day to encourage consumers to make the electric shift. At the same time, governments are enforcing change through legislation that bans the sale of new fossil fuelled vehicles from as early as 2025.

The urgency of the climate crisis and looming legislation changes has resulted in the exponential growth of the EV market. A recent McKinsey report estimates that by 2035, the three largest automotive markets — the European Union, United States and China — will be fully electric. However, while driving an EV is ‘zero emission’, an unsustainable secret hides in production.


Traditional diesel and petrol-powered vehicles benefit from lead-acid batteries, which are widely recyclable. However, the same can’t be said for EVs, which use lithium-ion batteries instead. Typically made from raw materials including cobalt, nickel and manganese, lithium-ion batteries are extremely expensive to produce and require high levels of mining activity. 

Mining raw materials can lead to huge environmental destruction, releasing elements into the atmosphere that can contaminate soils and disrupt entire ecosystems. What’s more, lithium-ion batteries are significantly more challenging to recycle, contributing to further environmental damage if improperly disposed of at the end of their life. 

Aside from environmental devastation, lithium-ion batteries are also in short supply. Battery production capacity across the globe is expected to increase twenty-fold, but this won’t be enough to meet the expected future demand. 

Although several industry players are developing recycling methods and reducing the reliance on raw materials, any significant progress is far off. For now, to ensure demand is met and improve the output for using these materials, it’s important for automakers to consider how they can make existing batteries last longer.


Automotive design engineers should consider the benefits that regenerative braking can bring in extending lithium-ion battery lifespan. A study by the Institute for Electrical Energy Storage Technology concluded that a higher level of regenerative braking usually reduces battery ageing by reducing lithium plating.

Lithium plating refers to the accumulation of metallic lithium on the battery’s anodes, which can cause irreversible damage over time and significantly reduce battery lifespan. Lithium plating is exacerbated long charging periods, but regenerative braking can help to alleviate this issue.

Regenerative braking occurs when an EV recovers energy while decelerating by using its electric motor as an electric generator and converting kinetic energy into electrical energy. This electrical energy is then stored in the vehicle’s battery, increasing range and efficiency between charges. Incrementally recharging the battery each time the vehicle brakes reduces the length of the charging period, therefore reducing the accumulation of metallic lithium and improving battery operations and life cycle.

Resistors play a crucial role in regenerative braking, by removing excess energy from the system in the event that the battery is already fully charged. This prevents overcharging or catastrophic damage to the system. Cressall’s EV2 resistor is designed specifically for EV applications and is the most compact and lightweight dynamic braking resistor model on the market, making it ideal for EVs.

EVs are central to a more sustainable transportation system but we mustn’t cite them as an answer to all of our environmental issues. Recognising the problems that they bring and considering both long and short-term solutions is necessary in order to create truly sustainable transportation. While lithium-ion battery recycling could be a viable option in the future, extending battery life through techniques such as regenerative braking is essential to see us through and reduce reliance on finite raw materials from today.



Imagine if you could reclaim some of the energy you lose throughout the day, without needing to rest. Did you know that electric vehicles (EVs) are able to do this through regenerative braking? An efficient way to reuse some of the energy lost as heat when a vehicle brakes, regenerative braking supports higher efficiency and the ability to travel further on a single charge.

When the driver steps on the brake pedal of a vehicle, hydraulic fluid pushes the brake pads against brake discs on each wheel. This friction slows down the vehicle, but the process also creates heat and wears away the material on the pads and discs over time.

Regenerative braking uses the excess kinetic energy to recharge an EV’s battery. It is able to do this because the electric motor in an EV can run in two directions: one, using the electrical energy, to drive the wheels and move the car, and the other, using the excess kinetic energy, to recharge the battery.

When the driver lifts their foot off the accelerator pedal and steps on the brake, the motor starts to resist the vehicle’s motion, “swapping direction”, and begins putting energy back into the battery. As a result, regenerative braking uses the EV’s motor as a generator to convert lost kinetic energy into stored energy in the battery.


The Competition and Market Authority has warned the UK government that, ahead of the petrol ban in 2030, more electric charging points must be established to make EV charging easier for road users. As it stands, there are only 25,000 public charging points in the UK. This needs to increase by tenfold to ensure EV success from 2030 onwards.

While not fundamentally an element of EV charging infrastructure, regenerative braking provides a way of making EVs more efficient by increasing the number of miles completed without charging the battery. Furthermore, the process can help make the charging less reliant on electricity from the National Grid. By reducing the frequency of charging and amount of electricity needed to recharge batteries, regenerative braking can make the entire charging process more energy efficient.


However, regenerative braking cannot act alone. To work effectively, other technologies are needed to make the process safe and effective. If the car battery is already full or there is a failure, regenerative braking cannot happen as the excess energy has nowhere to go and must be dispelled safely. If not dissipated, it won’t be possible to slow down the vehicle. To prevent this from happening, resistors are used to collect excess energy and dissipate it safely.

Cressall’s EV2 resistor converts excess electricity into heat that can be dissipated or used in other parts of the vehicle, such as to heat the cabin, the batteries or even the fuel cell. The EV2 is a lightweight, compact resistor which manages to transfer this heat into the cooling water or glycol mix, which is already used in the cooling or heating system for different vehicle components. Cooling is achieved by pumping cold coolant liquid, which comes into one end of the unit and absorbs the heat through thermal conductivity and convection. It can then be pumped through a radiator located away from unit and cooled again to reach the starting temperature.

While it may not be possible for humans to regain lost energy without taking time out to recharge, regenerative braking enables EVs to use excess energy to work more efficiently. With the help of resistors, EV users can benefit from a longer battery life, helping to drive EV efficiency forward and ensuring safe driving in any conditions.